Conception du détecteur de l’imagerie oxymétrique

Pour pouvoir mesurer le signal dans chaque fibre, je devais trouver un moyen de les imager avec ma caméra à haute sensibilité. J’ai tout d’abord réussi à trouver une lentille en ménisque convergent qui a une distance focale de 35 mm, en la collant directement sur l’objectif de la caméra, cela permet de rapprocher l’objet de la distance hyperfocale (approx 30 cm je crois) jusqu’à 35 mm, en diminuant le champ de vue par la même occasion.

J’ai donc imprimé deux pièces s’emboîtant en une boite en prisme cubique. La première est une plaque comportant 49 trous afin de faire passer toutes les fibres et de les aligner sur un même plan. La deuxième a un trou au centre pour y insérer la caméra ainsi qu’un petit remontant cylindrique afin d’y fixer la lentille. Le tout permet de bien maintenir toute l’optique solidement en position et dans l’obscurité, autant les fibres que la lentille et la caméra.

Une fois la boîte refermée, cela donne le détecteur assemblé visible sur les deux photos ci-dessus. D’un côté, il y a la caméra, bien insérée et collée, et de l’autre, le paquet de 49 fibres formant l’image. On peut voir le résultat capté par la caméra ci-dessous. L’espacement entre les fibres est tel qu’il permet à chacune d’être bien résolue et échantillonnée sur un bon nombre de pixels, même lorsque l’intensité lumineuse dans la fibre optique est très élevée. Dans le cas présent, j’avais pointé quelques fibres directement sur une ampoule incandescente. Bien évidemment, comme je n’utilise pas de lentille de champ à la sortie des fibres, celles sur le bord de l’image vont avoir une intensité captée par la caméra beaucoup plus faible que celles au centre, il va donc falloir faire une calibration pour appliquer la correction sur le signal mesuré.

 

Défrichage de fibre optique pour l’imagerie oxymétrique

Parce que oui, c’est possible de faire autre chose que des sapins de Noël avec de la fibre en PMMA à 10¢ le mètre. Je me suis lancé sérieusement, dans les derniers jours, dans mon projet d’imagerie oxymétrique. Pour commencer, j’ai découpé 147 bouts de 30 centimètres afin d’avoir une image composée d’un carré de 7×7 (ou toute autre forme comprenant 49 bouts de fibre sur l’image de la caméra).

Sources lumineuses

En utilisant deux sources de longueur d’onde différente, l’une dans le rouge, l’autre dans l’infrarouge, il est possible de déterminer le taux d’hémoglobine oxygénée par rapport à l’hémoglobine désoxygénée, en se basant sur les courbes d’absorption particulières. Ce principe est largement utilisé dans les sphygmo-oxymètres optiques, mesurant la concentration d’oxygène en un point (normalement un doigt) et supposant qu’elle est homogène dans le reste du corps. Or, la consommation d’oxygène par les organes varie selon l’effort énergétique qu’ils doivent fournir. En ayant une méthode qui permet de mesurer les variations d’oxygénation dans un volume donné, on ouvre la porte à toutes sortes d’applications intéressantes, comme l’imagerie spectroscopique proche infrarouge fonctionnelle (functional near-infrared imaging, fNIR, en anglais), ce qui est très excitant puisqu’elle permet de visualiser les processus mentaux en temps réel avec, ce que je souhaite vérifier, du matériel très peu coûteux et facile à trouver.

 (source : http://www.oximetry.org/pulseox/principles.htm)

Atténuation de la fibre

Résultats de recherche d'images pour « attenuation pmma fiber »

L’atténuation dans le proche-infrarouge pour le PMMA grimpe rapidement, comme on peut le voir sur le graphique. À 850nm, on a environ 5dB/m d’atténuation. Il faut donc garder les bouts de fibre très courts. Avec 30 centimètres, les pertes sont de 1,5dB (~71% du signal est transmis), ce qui fait mal, mais pas trop, espérons-le.

Matériel

Pour mes sources lumineuses, j’utilise deux DEL à très haute puissance optique (2,6W) afin d’être certain d’avoir suffisamment de signal. J’aurais pu utiliser des lasers, mais mon objectif était d’injecter simultanément toutes les fibres, le plus simplement possible. De plus, les DEL sont moins coûteuses et moins dangereuses (quoique à cette puissance, même si ce n’est pas un faisceau cohérent, j’ai tendance à être prudent quand même).

Je les avais déjà préalablement soudées l’année passée, lorsque j’avais commencé ce projet. Je leur ai rajouté un petit cylindre imprimé en 3D, qui se met directement autour du petit bulbe-lentille de la DEL et qui est suffisamment large pour y faire tenir les 49 fibres.

J’utilise pour les alimenter un power supply d’ordi, qui me donne 15V et 5A, le tout régulé à 700mA par diode par des régulateurs spécialisés pour cette application.

J’ai remarqué qu’allumées à pleine puissance, elles deviennent très chaudes très rapidement, ce qui va être à tenir en compte dans la suite du projet. Il va falloir soit les utiliser périodiquement avec un rapport cyclique faible, soit rajouter un système de refroidissement adéquat, ou bien y aller avec une combinaison de ces deux approches.

À 850nm, l’oeil perçoit un rouge très faible, sûrement la limite inférieure du spectre de la diode, qui est en fait bien plus lumineuse, tel qu’on peut l’observer avec la caméra qui lui donne une couleur mauve.

  

La DEL à 660nm est extrêmement brillante, puisque la quasi-totalité de son spectre est dans le visible. On peut voir que les fibres contiennent bien le faisceau.

Pour la caméra, j’utilise une caméra de drone de marque RunCam qui a une sensibilité absolument phénoménale pour son prix abordable : jusqu’à 0,0001 Lux (elle m’avait coûté 50$US si je me souviens bien). Je lui ai imprimé en 3D un petit adaptateur qui rassemble toutes les fibres et y fait tenir la caméra. Toutefois, comme on peut le voir sur la dernière image, ce sera à refaire puisque le focus de la caméra est à l’infini, ce qui mélange toutes les fibres en un gros blob de lumière. Il va donc falloir rajouter de l’optique pour imager correctement les fibres et arriver à les distinguer individuellement afin de pouvoir traiter le signal. C’est le pari à relever en ce moment dans ce projet.

Test de transmission d’un faisceau à 1310nm à travers un objectif

Au printemps dernier, j’ai acheté quelques composantes pour faire un projet de microscope confocal à fibre optique. Il y a tout d’abord un laser, une photodiode avalanche (APD) et un coupleur 2×1, le tout fonctionnant à 1310nm.

Construction

Pour alimenter la diode laser, j’utilise un régulateur de courant LM350. Pour ce qui est de la photodiode, c’est un peu plus compliqué. Pour profiter du gain de l’effet d’avalanche, il faut lui fournir un voltage inverse d’environ 50V. Je me suis donc procuré un convertisseur DC-DC qui prend 12V en entrée et qui peut fournir jusqu’à 80V en sortie, dont la tension de sortie est ajustable. Par la suite, l’amplificateur intégré dans la puce de l’APD a besoin d’une tension de -5,2V. Je lui fournis avec un autre LM350 monté en régulateur de voltage cette fois-ci.

  

Pour ce qui est du montage optique, je me suis arrangé pour que tous les composants à fibre utilisent la même sorte de connecteur, soit du LC/PC. Il n’y avait que le laser qui n’était pas de ce type, j’ai donc dû acheter une patchfiber pour passer du connecteur FC/PC à LC/PC.

L’arduino dans la photo ne sert pour l’instant qu’à donner du 5V pour le laser, l’objectif était d’utiliser l’ADC pour numériser le retour produit par l’amplificateur de l’APD.

À la sortie de la fibre, j’ai rajouté un objectif 10X afin de focuser le faisceau sortant de la fibre en un point donné, avec l’hypothèse que je serais capable de mesurer la réflexion avec l’APD. J’ai donc construit un petit support permettant de positionner la sortie de la fibre (donc le connecteur LP/PC) à une position calculée pour optimiser l’ouverture numérique du système (voir la photo en bas). Bien sûr, l’alignement n’est pas exact, puisque c’est imprimé en 3D.

Problèmes rencontrés

En premier lieu, je n’ai jamais réussi à obtenir le signal à la sortie de l’amplificateur situé sur la puce d’APD. Il faut croire que le hack que je voulais faire a atteint sa limite. Ne connaissant pas les propriétés de cette amplificateur, outre qu’il est AC-coupled à la sortie, j’ai décidé d’abandonner une façon de le faire marcher, puisque cela pourrait être dû à une multitude de raisons (la première étant qu’il soit tout simplement brisé). De toute manière, je m’intéresse beaucoup plus à la valeur DC du signal sur la photodiode puisqu’elle est directement proportionnelle à la puissance reçue.

Ce que j’ai fait pour obtenir une mesure malgré tout, ça a été de placer un multimètre en mode courant entre la source de 50V et l’entrée de la photodiode. Rappelons que seule une des deux broches de la diode étant accessible, c’était la seule manière de se brancher dessus. Cela a fonctionné, je mesurais environ 2mA lorsque le laser est branché direct dessus, et environ 30µA lorsque le système est branché tel que décrit, autrement dit, lorsque l’on «regarde» une clive droite qui renvoie 4% du signal (cela est confirmé en pliant la fibre de sortie pour constater que les pertes viennent de la clive et pas du coupleur). En faisant les mathématiques, on serait supposé d’observer environ 20µA (2000/2*0.04/2), c’est donc raisonnable.

Une autre hypothèse que je devais vérifier, c’est si mon objectif transmet à une longueur d’onde de 1310nm. Pour cela, je me suis rendu compte qu’il était possible de détecter cette longueur d’onde avec ma caméra, qui apparaît comme une lueur faiblement bleuâtre). Voici les photos que j’ai obtenues :

On peut donc constater que l’optique de mon objectif laisser très bien passer cette longueur d’onde. N’ayant pas de carte IR, je ne sais pas si le faisceau se focusse bel et bien, mais un test fait avec une diode laser rouge montrait que oui, donc le changement de longueur d’onde devrait normalement déplacer légèrement le point focal, mais ça devrait fonctionner.

J’ai été incapable d’observer une réflexion avec ce système, probablement parce que le signal est caché dans le bruit dû à la réflexion de la clive. Cependant, il y aurait deux pistes à explorer :

  • Faire un capteur de contact direct entre la fibre et un milieu. En plaçant le connecteur directement sur des surfaces (chose qu’il ne faut jamais faire si on ne veut pas se ramasser avec un motton de poussière dessus), on peut remarquer une bonne fluctuation du signal, dépendamment de la lumière réfléchie. On pourrait essayer de s’en servir pour détecter des défauts de surface, etc. Il faudrait explorer davantage en faisant l’acquisition du signal et en observant si c’est possible de le corréler à quelque chose.
  • Faire un capteur de l’état de polarisation de la fibre. Le coupleur va laisser passer plus ou moins de signal sur l’APD dépendamment de l’état de polarisation du faisceau réfléchi par la clive. En pratique, cela signifie que lorsque l’on perturbe physiquement la fibre en la pliant légèrement (sans se rendre au rayon critique non plus), la modification de la biréfringence agit sur l’état de la polarisation du signal (une fois à l’aller et une autre fois au retour). Ce sont bien entendu de petites modifications, mais l’APD amplifie suffisamment le signal pour que cela soit aisément très perceptible (de l’ordre de quelques µA). L’effet pourrait être optimisé en créant une lame quart d’onde ou carrément un polariseur complet avec un segment de fibre.

En outre, je crois que je vais abandonner pour l’instant l’idée d’en faire un microscope confocal, à moins d’avoir du meilleur équipement (cliveuse à angle, monture d’alignement, etc.). Toutefois, le montage actuel offre quelques promesses.