Je suis en train de concevoir un spectromètre de type Czerny–Turner. En le simulant sur OSLO, je me suis rendu compte d’une propriété que j’avais oubliée : pour chaque valeur de pas (lignes par mm), il y a une longueur d’onde maximale au-delà de laquelle l’angle de diffraction de l’ordre 1 dépasse physiquement les dimensions du spectromètre.
Dans mon cas, j’utilise un réseau en réflexion et un miroir concave. L’équation de la diffraction est :
sin(theta_m) – sin(theta_i) = m*d*lambda
où theta_m est l’angle diffracté, theta_i l’angle d’incidence, m l’ordre de diffraction, d le pas du réseau et lambda la longueur d’onde de la lumière.
En postulant theta_m = 2*theta_i (le faisceau réfracté revient sur le parcours du faisceau incident après une réflexion sur le réseau tourné à un angle -theta_i), approximation qui vient du fait que l’on souhaite avoir une longue focale pour les optiques pour avoir une bonne résolution, on trouve :
sin(2*theta_i) – sint(theta_i) = m*d*lambda
Si l’on trouve le maximum de la partie gauche de l’équation (https://www.wolframalpha.com/input?i=max%28sin%282x%29-sin%28x%29%29), on obtient 1,76.
J’étais vraiment curieux de la manière dont on obtient cette solution, alors j’ai payé la version pro de wolfram juste pour le savoir. On commence évidemment par faire la dérivée de l’expression et la mettre égale à zéro, ce qui fait 2cos(2x)-cos(x)=0. Rendu là, j’étais bloqué, parce que je ne trouvais aucune identité trigonométrique pour m’avancer en quoi que ce soit. Bien sûr, un calcul numérique serait possible, mais j’étais sûr qu’une solution analytique existe. L’identité magique à utiliser est en fait cos(2x) = 2cos^2(x) – 1. En l’utilisant, on obtient une fonction quadratique de cos(x) : -2-cos(x)+4cos^2(x)=0, qui se résout de la manière usuelle, en faisant attention aux signes et aux cadrant des angles. Bref, toutes ces mathématiques commençaient à être loin, un petit rappel a fait du bien.
Pour un réseau de 1200 lignes/mm (que je prévoyais utiliser initialement), la longueur d’onde maximale pouvant être diffractée vers l’optique est de :
1,76 / (1*1200mm⁻1) = 1,47um.
Étant donné que j’ai l’intention de mesurer des sources à 1550nm avec ce spectromètre, je dois modérer mes ardeurs et descendre à 600 lignes/mm. Ce qui fait prendre un coup à ma résolution spectrale, mais au moins, les angles sur le réseau sont plus réalistes. À 600 lignes/mm, la longueur d’onde maximale est le double, soit 2,94um. Pour l’instant, je prévois utiliser une photodiode InGaAs, qui peut détecter la lumière juqu’à 1700nm, ce qui posera la limite supérieure de mon spectromètre.